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LETTER TO THE EDITOR 

On the canonical equivalence of the Kepler problem in 
coordinate and momentum spaces 

M Lakshmanant and H Hasegawa 
Department of Physics, Kyoto University, Kyoto 606, Japan 

Received 20 August 1984 

Abstract. It is shown that the dynamics of the hydrogen atom in elliptic cylindrical 
coordinates on the Fock hypersphere S3 in momentum space is canonically equivalent to 
the R 3  (usual position space) dynamics. The implication to the semiclassical quantisation 
procedure of the hydrogen atom in a weak magnetic field is briefly discussed. 

Even though the quantum dynamics of a hydrogen atom in a uniform magnetic field 
associated with the quadratic Zeeman interaction, HQ = $ B 2 ( x 2  + y 2 ) ,  is non-separable, 
the O(4) symmetry of the hydrogen atom may be used to obtain an exact separation 
of the Schrodinger equation represented on the Fock hypersphere S’ in momentum 
space in the weak-field limit, as noted recently by Herrick (1982). On the other hand, 
it is being increasingly realised that an alternative route to the analysis of the problem 
is to treat it as a nonlinear dynamical system and then perform a semiclassical 
quantisation (Gutzwiller 1977, Solovev 1982, Robnik 1982, Reinhardt and Farrelly 
1982, Delos et al 1983). From this point of view, the classical dynamics in the associated 
momentum space is of fundamental interest for an understanding of the quantal 
problem. Accordingly it becomes necessary to establish that the transformations 
between R3 and S3  are canonical so that conjugate pairs may be defined on S3 .  In 
this letter we point out that the elliptic cylindrical coordinate parametrisation of the 
Fock sphere S3  employed by Herrick provides an exact canonical transformation of 
the R3 dynamics in the field free case ( B  = 0). We also note how this parametrisation 
can be extended to include the magnetic field so that at least in the situation B + 0, 
Solovev’s procedure of semiclassical quantisation (Solovev 1982) can be improved. 

Let us consider the pure Kepler Hamiltonian (without an external field): 

( 1 )  H=’ 2 - r - I  
2u 

where U ( = p )  are the canonical conjugate momenta to r = (x, y ,  z )  = (x,, x2, x3) E R 3 .  
We have chosen the units such that charge and mass are unity. Then, the equation of 
motion is 

(2) 
We define the Fock sphere S3  (Bander and Itzykson 1966) specified by the coordinates 

(3)  

3 + = U  v = - r / r  . 

u = ( r / n ) u  u4 = ( n 2 u 2 -  I ) / (n2u2 + 1 )  = ( 1  - r / n 2 )  

t On leave from the Department of Physics, Bharathidasan University, Tiruchirapalli-620 023, India. 
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where 
n ( -2E)-’I2, (4) 

E being the energy of the hydrogen atom which is negative throughout the present 
discussion. The four-vector U = ( U ,  u4), then lies in the unit sphere S3:  

u 2 =  u2+u:= 1. ( 5 )  

If we now consider the associated angular momentum vector L = r X U and the 
normalised Lenz vector K = n{u x ( r  x U) - r /  r }  (= (-2E)-”2A),  we can express them 
in terms of the four-vector U and its time derivative U as 

L =  n4(1 - u4)(u x i )  

K = n4( 1 - u ~ ) ( u U ~ -  ~ 4 i )  

L2 -b K 2  = n2. 

(6a)  

(6b) 

(7) 

which satisfy the basic identity (the so-called Casimir identity) 

On the other hand, it is known (Kalnins et a1 1976) that the quantised versions of L 
and K corresponding to the O(4) group of the hydrogen atom satisfy the Lie algebra 
LO(4): 

[ L ,  Lj] = i&ijkLk [ Li, Kj] = i [ Ki, Kj] = i&ijkLk ( i 9 . L  k =  1,2931, 

which is defined in terms of vector spaces of functions on R3 as well as on S3 .  On 
R3 they have the usual expressions: 

L = r x p  K = ( - 2 E ) - 1 ’ 2 [ f ( p  x L -  L x p )  - r / r ]  (8) 

L =  U x p ,  K = v u 4  - U 4 P u  (9) 

with r = (x, y, z ) ,  p = -i(ax, a,, ax), while on S3  they have the form (Kalnins et al 1976) 

with p ,  = -ia, pus = -ia,. 
Thus, in the related classical problem the commutators for (8) and (9) will be 

replaced by the Poisson brackets and the linear operators L and K become the 
associated classical vectors in R3 and also in S3.  A comparison of the expressions 
(6a, b) with (9) yields the relations between U and p ,  as follows 

i = ~ ~ “ ( 1 -  u 4 ) ~ - i p u  U4=[n4(1 - U ~ ) ] - I P ~ ~ .  ( loa )  

This set of relations is combined with another set, to be derived from the equations 
of motion ( 2 ) ,  i.e. 

@, = - [n2(  1 - u4)]-1u pu4 = -En’( 1 - u4)] - ’u4 ,  ( lob)  
which may be regarded as the equations of the Kepler motion in S 3 .  

At this stage, however, we note the important fact that the above set of equations 
of motion cannot be canonical equations of motion because of the presence of the 
factor nW4( 1 - u4)-’ on the right-hand sides of each member of equations (loa,  b). In 
other words the presence of this factor precludes the canonicity of the variables ( U ,  u4) 
and ( p , , p 4 ) .  In fact, without this extra factor this dynamics may be shown to be 
equivalent to that of a free particle on a 3-sphere (Lakshmanan and Eswaran 1975, 
Higgs 1979) which can be derived from a suitable Hamiltonian. The reason for this 
inconvenience is essentially that the four-vector U and its ‘conjugate’ momenta p, are 
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redundant variables for S3-dynamics. Therefore, we desire some other set of variables 
that is exactly a canonical set on S3 ,  equivalent to the original space R3t .  Here, we 
show that the elliptic cylindrical coordinates fulfil this requirement. 

The system of elliptic cylindrical coordinates of type I (Kalnins et a1 1976, Hemck 
1982) is defined by 

uI  = sn a dn p cos 4 u 2 = s n a d n p s i n 4  ( 1 1 4  b )  

u 3 = d n a s n p  u4= cn a cn p ( l l c ,  d )  

where sn a = sn(a, k), sn p = sn(p, k’) etc are the Jacobian elliptic functions, k and 
k‘ = ( 1  - k2)1’2 being the modulus and complementary modulus, respectively. From 
the identity sn2 a dn2 p +dn2 a sn2 p +cn2 a cn2 p = 1, it is easy to see that the unit 
sphere ( 5 )  is parametrised by these coordinates a, p, 4 and their respective momenta 
Pa, Pa, P4 defined by 

P = , ~  = n2r(  k2 cn2 a + kf2  cn2 p ) (  ci, or @), 

p4 = n2r  sn2 a dn2 p&. 
Thus, what we want to prove is that the transformation from the Cartesian coordinates 
in the position space and their momenta {x, y, z ;  px, pp p z }  E R3 X R3 to the set 
{a, p, 4 ; pa, pa, p + }  E S3  x R 3  is indeed a canonical transformation. This is true, iff the 
canonical Poisson bracket on R 3 x R 3  is preserved in S 3 x R 3  to within a non-zero 
constant factor (Saletan and Cramer 1971). 

The proof of our assertion proceeds as follows. We consider the set of fifteen 
Poisson brackets 

{xi, x j }  = {Pi, Pjl = 0 {xi,  P j l =  Sij ( i , j = l , 2 , 3 )  (12) 
and define the Poisson bracket for X and Y by { X ,  Y }  =X:=, ( ( d X / a x i ) a Y / a p i -  
( a x l a p , )  a Y / a x i )  ; we then calculate the other set of fifteen Poisson brackets among 
{a, p, 4 ;  p u , p a , p + }  to show that the latter is really a canonical set. However, this is 
equivalent to showing the converse that under the assumption of the fifteen canonical 
commutation relations 

{a, P }  = {a, 4 )  = {P ,  41 ={Pa, PSI= { P a ,  P J  = { P a ,  P d  
= {a, PPI = {P, P a l  = { 4 , P a l  ={A Pal = {a, P+l = {P, P d  = 0 

{a, P a l  = {P, P a } =  {4, P d  = 1, (13) 

the former relations (12) hold, where now the Poisson bracket is defined by { X ,  Y} = 
( a X / a a ) a Y / a p ,  - ( a X / a p , ) a Y / a a  +(the /3 term) +(the 4 term). We adopt the latter 
procedure, since it is possible to express the former set as functions of the latter: We 
have 

(14) 

and the elliptic-cylindrical parametrisation ( 1  1 a-e) provides the expressions of ui and 
p i  = [ n (  1 - u4)]-’ui xi = - n [ (  1 - ~ 4 ) ~ u ,  + ~ a u i l  ( i  = 1 ,2 ,3 )  

t With regard to this redundant structure in (loa, b ) ,  it may be of further interest to note that the second 
members of these equations, i.e. u4 and pur ,  are closed by themselves, and thus can be reduced to a 
second-order differential equation for the radius r (note r is related to u4 as indicated in (3 ) )  and is equivalent 
to the well known Kepler equations: r = n2( 1 - e cos JI ) ,  f = n3( JI - e sin JI ) ,  where JI is the eccentric anomaly. 
Thus, once r ( t )  is determined, the extra factor n4( I - u4) becomes a known function of time and may be 
absorbed into the time variable in (loa, b ) .  
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pu,, i = 1,2,3 and 4, in terms of a, p, #J and pu, pp, pc Thus 

sn a dn p 
(15a) 

sn a dn p sin C$ 
p y  = n(  1 - cn a cn p )  cos #J 

P x  = n ( l - c n a c n p )  

(15b) 
dn a sn p 

n (  1 -cn a cn p )  ’ P z  = 

x = n { -dn a dn p (cn a - cn p ) p a /  J + sn a cn p ( k2 cn a + k” cn p)pp/  J }  cos #J 

1 - cn a cn p 
sn a dn p + n  Pm sin #J 

y = n{same as above} sin #J - n 
1 -cn a cn p 

sn a dn p Pm cos 4 

z = n{sn a cn p ( k 2  cn a +k”cn  p ) p , / J  +dn a dn p(cn a -cn p ) p , / J }  (15e) 

where J = k2  cn2 a + k” cn2 p. 
At first sight, it looks a formidable task to calculate the fifteen Poisson brackets 

for the above six expressions, but it turns out that there exists a keyword identity by 
which most brackets are simplified to show that these are in fact a set of canonical 
variables satisfying (12). This identity reads: 

sn2a s n 2 / 3 ( k 2 c n a + k ‘ 2 c n p ) 2 + d n 2 a  d n 2 P ( c n a - c n p ) 2  

= (k2cn2  a + k ”  cn2 p)(1 -cn a cn 0)’ 

which, with the aid of the Casimir identity (71, ensures the identity 

x2 + y 2  + z 2  = r2 = n4( 1 - u4l2. (17) 

Upon establishing, thus, the canonicity of the pair (a, p, 4)  and ( pm, pp, pm), it is 
now possible to see the separability of the Kepler motion on S 3 .  First, we write down 
the Casimir identity (7) in terms of this canonical set so that 

P:+P;  + P: =n2. 
k2 cn2 a + kf2 cn2 p sn2 a dn2 p 

Then, because of the cyclicity of the coordinate 4, 

(11) 

which is shown from (15a-d) to be equal to the z component of the angular momentum, 
xpy - yp,. This second integral of motion is combined with I to yield the third integral: 

p + ( =  n4(1 -cn a cn p )  sn2 a dn2 p d )  = m (19) 

kI2 cn2 p p :  - k2 cn2 ap’p 
k2 cn2 a + kr2  cn2 p 

kf2p i  cn2 a cn2 p - + - A  
sn2 a dn2 p (111) 

where the left-hand side is shown to be a hyperbolic form of the Lenz vector, namely 
a generalisation of Solovev (1982): 

( 1  -k2)(Kf;+K:)-k2Ki= k2n2A 

so that 

A = k2n2A. 
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From these, the desired separation is given by 

p i  = b - k2n2 sn2 a - m2/sn2a 

p i  = -b + n 2  dn2 p + k2m2/dn2P 

where 

b = k2n2( 1 + A )  + m2. 

The two action integrals for the a and p coordinates in (22), i.e. 
2 K ’  

Ja =L pa d a  
7T 

where K and K’ are the complete elliptic integrals of the first kind associated with 
sn( a, k) and sn(p, k’), respectively, will provide the semiclassical quantisation of the 
two types of Kepler motion corresponding to a rotation and a libration of the Lenz 
vector. But, both can be unified in a complex plane such that 

( -b+k2n2sn2 i+m2/sn25)”2d l  
1 

where C, and C, are two intervals of the fundamental period along the real and 
imaginary axes of 5 ;  0 s  Re 5 < 4 K  and OS Im < < 4 K ’ ,  for any Jacobian elliptic 
function of a complex variable. Without an external field, the quantisation must yield 
the energy value E = n = 1,2, , . , , irrespective of the separation parameter b 
in (24), which is assured from a more detailed examination of the integration (24). 

An implication of the existence of the above two action integrals (24) is that, when 
a uniform magnetic field B is applied to the Kepler motion of a charged particle, a 
separation of the motion comes out in phase space in the limit B+O. This may be 
looked upon as a natural unperturbed motion of two degrees of freedom with a 
generally irrational winding number (Lichtenberg and Lieberman 1983) that will yield 
a KAM torus remaining undestroyed, when the perturbation strength B is increased to 
an extent. 

The fact that the elliptic cylindrical parametrisation on the Fock sphere is a 
legitimate canonical set of variables equivalent to the R3 dynamics should provide, in 
principle, a way to describe the diamagnetic Kepler motion with an arbitrary strength 
of B in terms of the set {a ,  p, 4;  pa, pp, p + } .  Under such circumstances, we can show 
that the Casimir identity I holds exactly if p+  is replaced by p4 + B-term (involving a, 
p, p m ,  p p ) .  However, the separability by means of I11 is no longer valid. Nevertheless, 
an extended formulation can be used to describe probable KAM tori by this analytic 
means, where the modulus k is unrestricted to the value obtained by Solovev (Hasegawa 
et a1 1984). 

ML would like to thank the Japan Society for Promotion of Science for the financial 
support provided during his stay at Kyoto. 
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